

General Certificate of Education Advanced Subsidiary Examination
June 2012

Mathematics

Unit Pure Core 1

Wednesday 16 May 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is not permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 Express $\frac{5 \sqrt{3}-6}{2 \sqrt{3}+3}$ in the form $m+n \sqrt{3}$, where m and n are integers.

2 The line $A B$ has equation $4 x-3 y=7$.
(a) (i) Find the gradient of $A B$.
(ii) Find an equation of the straight line that is parallel to $A B$ and which passes through the point $C(3,-5)$, giving your answer in the form $p x+q y=r$, where p, q and r are integers.
(b) The line $A B$ intersects the line with equation $3 x-2 y=4$ at the point D. Find the coordinates of D.
(3 marks)
(c) The point E with coordinates $(k-2,2 k-3)$ lies on the line $A B$. Find the value of the constant k.

3 The polynomial $\mathrm{p}(x)$ is given by

$$
\mathrm{p}(x)=x^{3}+2 x^{2}-5 x-6
$$

(a) (i) Use the Factor Theorem to show that $x+1$ is a factor of $\mathrm{p}(x)$.
(ii) Express $\mathrm{p}(x)$ as the product of three linear factors.
(b) Verify that $\mathrm{p}(0)>\mathrm{p}(1)$.
(c) Sketch the curve with equation $y=x^{3}+2 x^{2}-5 x-6$, indicating the values where the curve crosses the x-axis.

4 The diagram shows a solid cuboid with sides of lengths $x \mathrm{~cm}, 3 x \mathrm{~cm}$ and $y \mathrm{~cm}$.

The total surface area of the cuboid is $32 \mathrm{~cm}^{2}$.
(a) (i) Show that $3 x^{2}+4 x y=16$.
(ii) Hence show that the volume, $V \mathrm{~cm}^{3}$, of the cuboid is given by

$$
V=12 x-\frac{9 x^{3}}{4}
$$

(b) Find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
(c) (i) Verify that a stationary value of V occurs when $x=\frac{4}{3}$.
(ii) Find $\frac{\mathrm{d}^{2} V}{\mathrm{~d} x^{2}}$ and hence determine whether V has a maximum value or a minimum value when $x=\frac{4}{3}$.

5 (a) (i) Express $x^{2}-3 x+5$ in the form $(x-p)^{2}+q$.
(ii) Hence write down the equation of the line of symmetry of the curve with equation $y=x^{2}-3 x+5$.
(b) The curve C with equation $y=x^{2}-3 x+5$ and the straight line $y=x+5$ intersect at the point $A(0,5)$ and at the point B, as shown in the diagram below.

(i) Find the coordinates of the point B.
(ii) Find $\int\left(x^{2}-3 x+5\right) \mathrm{d} x$. (3 marks)
(iii) Find the area of the shaded region R bounded by the curve C and the line segment $A B$. (4 marks)

6 The circle with centre $C(5,8)$ touches the y-axis, as shown in the diagram.

(a) Express the equation of the circle in the form

$$
\begin{equation*}
(x-a)^{2}+(y-b)^{2}=k \tag{2marks}
\end{equation*}
$$

(b) (i) Verify that the point $A(2,12)$ lies on the circle.
(ii) Find an equation of the tangent to the circle at the point A, giving your answer in the form $s x+t y+u=0$, where s, t and u are integers.
(5 marks)
(c) The points P and Q lie on the circle, and the mid-point of $P Q$ is $M(7,12)$.
(i) Show that the length of $C M$ is $n \sqrt{5}$, where n is an integer.
(ii) Hence find the area of triangle $P C Q$.

7 The gradient, $\frac{\mathrm{d} y}{\mathrm{~d} x}$, of a curve C at the point (x, y) is given by

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=20 x-6 x^{2}-16
$$

(a) (i) Show that y is increasing when $3 x^{2}-10 x+8<0$.
(ii) Solve the inequality $3 x^{2}-10 x+8<0$.
(b) The curve C passes through the point $P(2,3)$.
(i) Verify that the tangent to the curve at P is parallel to the x-axis.
(ii) The point $Q(3,-1)$ also lies on the curve. The normal to the curve at Q and the tangent to the curve at P intersect at the point R. Find the coordinates of R.

